Course Schedule - Spring Semester 2025

     

Meeting location information can now be found on student schedules in ESTHER (for students) or on the Course Roster in ESTHER (for faculty and instructors).
Additional information available here.

STAT 635 001 (CRN: 26554)

FOUNDATIONS OF STATISTICS

Long Title: FOUNDATIONS OF STATISTICS
Department: Statistics
Instructor: Li, Meng
Meeting: 2:00PM - 3:15PM MW (13-JAN-2025 - 25-APR-2025) 
Part of Term: Full Term
Grade Mode: Standard Letter
Course Type: Lecture
Language of Instruction: Taught in English
Method of Instruction: Face to Face
Credit Hours: 3
Course Syllabus:
Course Materials: Rice Campus Store
 
Restrictions:
Must be enrolled in one of the following Level(s):
Graduate
Section Max Enrollment: 49
Section Enrolled: 0
Enrollment data as of: 14-NOV-2024 4:55PM
 
Additional Fees: None
 
Final Exam: GR Course-Dept Schedules Exam
 
Description: Statistical inference is the de facto tool in data science to carry out hypothesis testing and draw conclusions under uncertainty. With increasingly diverse stakeholders relying on inference as data-driven solutions, to study, decipher, and articulate its strength and limitation become more important than ever. In this course, we will discuss fundamental issues in statistical inference, partly in response to a range of daunting challenges posed by modern data science such as reproducibility and interpretability at large scales. A sample of topics includes the use of p-values vs. Bayes factors, frequentist properties of Bayesian procedures for both parametric and nonparametric models, Bernstein von-Mises phenomena, variable/feature selection, post-selection inference, false discovery control. Recommended Prerequisite(s): STAT 532/533 or equivalent courses on classical statistical inference, and STAT525 or equivalent courses on Bayesian inference.